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Abstract

Non-linear dynamic behaviour of a normally excited preloaded Hertzian contact (including possible
contact losses) is investigated using an experimental test rig. It consists of a double sphere plane contact
loaded by the weight of a rigid moving mass. Contact vibrations are generated by a external Gaussian white
noise and exhibit vibroimpact responses when the input level is sufficiently high. Spectral contents and
statistics of the stationary transmitted normal force are analyzed. A single-degree-of-freedom non-linear
oscillator including loss of contact and Hertzian non-linearities is built for modelling the experimental
system. Theoretical responses are obtained by using the stationary Fokker–Planck equation and also
Monte Carlo simulations. When contact loss occurrence is very occasional, numerical results show a very
good agreement with experimental ones. When vibroimpacts occur, results remain in reasonable agreement
with experimental ones which justify the modelling and the numerical methods described in this paper.

The contact loss non-linearity appears to be rather strong compared to the Hertzian non-linearity. It
actually induces a large broadening of the spectral contents of the response. This result is of great
importance in noise generation for many systems such as mechanisms using contacts to transform motions
and forces (gears, ball-bearings, cam systems, to name a few). It is also of great importance for tribologists
preoccupied with preventing surface damage.
r 2002 Elsevier Ltd. All rights reserved.

1. Introduction

Hertzian contacts exist in many mechanical systems such as mechanisms and machines (gears,
cam systems, rolling element bearings, etc). Under operating conditions, these contacts are often
excited by dynamic normal forces superimposed on a mean static load. These excitation forces
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which are deterministic or random, can result from external sources, such as applied load
fluctuations, or from internal ones, such as roughness-induced vibrations. Under excessive
excitation, contacts can exhibit undesirable vibroimpact responses, allowed by clearances
introduced through manufacturing tolerances. Resulting dynamic behaviour is characterized by
intermittent loss of contact and shocks leading to excessive wear, surface damage and excessive
noise.

In a companion paper (Part I: harmonic excitation) [1], the dynamic behaviour of a
fundamental preloaded Hertzian contact subjected to harmonic normal forces was studied. To
this end, an improved experimental test rig permitted us to investigate the primary resonance in
detail, including vibroimpact responses. Theoretical results were also presented to analyse the
main characteristics of the primary resonance.

In the present second part of this work, the previous analysis is extended to the case of
vibroimpact response of a preloaded and non-sliding dry Hertzian contact under Gaussian white
random normal excitation. Comparisons between experimental and theoretical results leads to
some conclusions regarding some characteristics of the random dynamic responses, including
vibroimpact behaviour.

As the literature shows, there exist a few papers in this area. These include Refs. [2–8]. They
generally concern random normal vibrations for sliding contacts related to the internal random
roughness surface induced excitation.

Experimental results can be found for example in Refs. [3–6,8]. In these studies, random force
excitation applied to the contact is never exactly known because measurements are always
performed during sliding conditions. It is estimated on the basis of assumptions on the spatial
spectrum of the surface roughness input. Decrease of the frequency domain spectrum shape with a
o–4 law is generally retained. These works principally focus on the interaction between normal
and tangential forces, friction force vibrations and friction coefficient behaviour under dynamic
conditions. Further, vibroimpact behaviours are very partially analyzed.

In a theoretical point of view, Nayak [2] presents a detailed analysis of a Hertzian contact
excited by a broadband random normal force. But, intermittent loss of contact is partially taken
into account. This problem is examined by Hess et al. [6] who consider also small values of
probability of contact loss. The theoretical method used is based on the Fokker–Planck equation,
introducing the restoring elastic Hertzian force by a third order Taylor expansion. The procedure
is refined by P.arssinen in a recent brief paper by introducing the real form of the theoretical
restoring elastic Hertzian force [7].

2. Test rig and experimental procedure

The experimental system studied is similar to the one presented in Part I of this work [1]. Recall
that it consists of a 25.4mm diameter steel ball preloaded between two horizontal steel flat
surfaces. The first one is rigidly fixed to a vertically moving cylinder, the second one is rigidly fixed
to a heavy rigid frame. The double sphere–plane dry contact is loaded by a static normal load Fs

= mg = 110N which corresponds to the weight of the moving cylinder.
Using a suspended vibration exciter, random normal force is applied to the moving cylinder and

superimposed on the static load. For this end, a signal generator and a power amplifier are used to
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generate the white-noise signal. This signal is filtered above 1 kHz which is up to four times the
experimental linearized contact frequency (f0 = 233.4 Hz).

A piezoelectric force transducer is mounted between the vibration exciter and the moving
cylinder to measure the excitation force. The normal force N(t) transmitted to the base through
the contact is measured by a piezoelectric force transducer mounted between the lower plane and
the rigid frame. Considering the experimental system and the transducer stiffness (8000N/mm),
the force measurement bandwidth is sufficiently wide (0–7 kHz).

The input force and the dynamic response are displayed on a storage oscilloscope. Experimental
average one-sided RMS magnitude spectra are measured with a real-time spectrum analyzer using
a sampling rate of 4096 samples over the frequency bandwidth (0–1 kHz) with a frequency
resolution always less than 0.25Hz. Average spectra were obtained with a number of spectrum up
to 275. Dynamic responses are digitized using an A/D converter and stored for statistical post-
treatments. These responses are sampled for a 20 s duration with sampling rate of 10 000 samples
per second.

3. The theoretical dynamic model

3.1. Equation of motion

On the basis of identical assumptions that were introduced in the first part of this work, the
experimental system is modelled by a randomly excited single-degree-of-freedom non-linear
dynamic system shown in Fig. 1 and is described by the following motion equation [9]:

m.z þ c’z þ k½zHðzÞ�3=2 ¼ Fsð1 þ
ffiffiffi
h

p
W ðtÞÞ: ð1Þ

In this equation, z is the normal displacement of the rigid mass m measured such that z o 0
corresponds to loss of contact. Assuming a viscous law, c is a damping coefficient, k is a constant
given by the Hertzian theory, H is the Heaviside step function, W(t) is a stationary zero-mean
Gaussian white noise and h controls level of the random normal force. From Eq. (1), the
theoretical static contact compression zs and the linearized contact natural circular frequency O
are given by

zs ¼
Fs

k

� �2=3

; ð2Þ

O2 ¼
3k

2m

� �
z1=2

s : ð3Þ

Recall that data have been previously found from the experimental characteristics as

zs ¼ 7 mm; f0 ¼
O
2p

¼ 232 Hz ð4; 5Þ

Now, by letting

q ¼
3

2

z � zs

zs

� �
; t ¼ Ot; $ ¼ o=O ð6; 7; 8Þ
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a dimensionless equation of motion is achieved in the same way as in Part I:

.q þ 2z ’q þ ½ð1 þ 2
3
qÞHð1 þ 2

3
qÞ�3=2 ¼ 1 þ

ffiffiffi
h

p
wðtÞ: ð9Þ

In this equation, overdot indicates differentiation with respect to the dimensionless time t, z is an
equivalent viscous damping ratio, parameter h controls the input level and w(t) is chosen as a
stationary zero-mean Gaussian white noise with a unit power spectral density, Swwð$Þ ¼ 1:: So,
considering the dimensionless excitation force f ðtÞ ¼

ffiffiffi
h

p
wðtÞ; the power spectral density and

autocorrelation function are given by

Sff ð$Þ ¼ h; ð10Þ

Rff ðtÞ ¼ 2phdðtÞ; ð11Þ

where d(t) is the Dirac function. With this choice, one should notice that the power spectral
density of W(t) is equal to 1/O. Hence, the power spectral density of the excitation FðtÞ ¼
Fs

ffiffiffi
h

p
W ðtÞ is equal to

Sff ðoÞ ¼ S0 ¼ F2
s h=O: ð12Þ

From the experimental one-sided spectral density Gff(f) = G0, one has

G0 ¼ 4pS0; h ¼
f0G0

2F2
s

: ð13; 14Þ

Finally, it should be noted from Eq. (9) that loss of contact corresponds to the inequality

qo� 3
2
: ð15Þ
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Fig. 1. The studied randomly excited single-degree-of-freedom oscillator.
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3.2. Numerical methods

To investigate theoretical dynamic responses, several numerical methods have been used as
follows:

* a classical numerical time integration explicit scheme, i.e., the central difference scheme, for
achieving dynamic time histories of responses,

* the stationary Fokker–Planck equation applied to system (6) under Gaussian white-noise
excitation for describing the statistics of the dynamic responses,

* classical statistical tools to describe random vibrations,
* Monte Carlo simulations to estimate power spectral densities of responses of the randomly

excited system.

When necessary, these methods are described in the following.

4. Experimental results

4.1. Dynamics without loss of contact

Fig. 2 displays the experimental average one-sided RMS magnitude spectra of the transmitted
normal force for various random input levels. These levels are chosen in such a way that no loss of
contact occurs during the measure. For these cases, G0 = 1� 10–4, G0 = 4.5� 10–3 and G0 =
30� 10–3 N2/Hz with corresponding values h = 1� 10–6, 4.5� 10–5 and 3� 10–4, For the lowest
input level, the spectrum exhibits a single resonant peak close to the linearized contact frequency
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Fig. 2. Experimental one-sided RMS spectra of the transmitted normal force for h E 1� 10–6, 4.5� 10–5 and 3� 10–4

(respectively a, b, c).
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(233.4Hz). This result is in very good agreement with the predicted one (232Hz). In this case,
linear behaviour can be assumed and an equivalent viscous damping ratio can be estimated from
the half-power frequency bandwidth method. Experimental curve leads to z less than 0.5%. This
result is coherent with the previous value found in the Part I of this work [1].

When the input level increases, the dynamic behaviour becomes weakly non-linear. Actually, a
second peak close to the second harmonic of the linearized contact frequency arises. For the
highest input level shown in Fig. 2, the second peak value reaches 8% of the main peak value.
Furthermore, increasing the input level, one observes a weak broadening of the two peaks. A
weak decrease of the two peak frequencies is also observed.

Experimental normal force probability density functions corresponding to the three preceding
input levels are presented in Fig. 3. The associated mean, standard deviation, and skewness values
are given in Table 1. The normal force shows a nearly zero probability of intermittent contact loss
(which corresponds to No�1). Further, increasing the input level, the Gaussian-like shape of the
probability density function moves to a more and more asymmetrical shape. This is confirmed by
the evolution of the skewness value given in Table 1. However, the deviation from a Gaussian
process is weak. Considering the mean value of the normal force, it remains also very close to the
applied static load. Further, the standard deviation reaches 40% of the static normal force.

Fig. 4 displays an example of the time history of the normal force for an input level such that
intermittent contact loss does not occur during acquisition data. In agreement with the spectral
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Fig. 3. Probability density functions of the measured transmitted normal force for h E 1� 10–6, 4.5� 10–5 and 3� 10–4

(respectively a, b, c).

Table 1

Mean value E[N], standard deviation s, and skewness g of the measured dimensionless transmitted force

h E[N] s g

1.0� 10–6 �9.8� 10–5 0.03 0.011

4.5� 10–5 7.0� 10–6 0.15 0.089

3.0� 10–4 4.6� 10–5 0.38 0.260
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responses content, this trace is typical of a narrow-frequency-band random noise response. A
slightly asymmetrical response can be observed, revealing the asymmetric law of the restoring
Hertzian elastic force around the static load.

4.2. Dynamics with intermittent loss of contact

When the random input level increases, intermittent contact loss may occur as the normal force
can reach the static load. Fig. 5 shows the experimental average one-sided RMS magnitude
spectra for increasing random input levels, chosen in such a way that intermittent loss of contact
occurs during the measure. For these cases, G0=6� 10–2, G0=1.7� 10–1 and G0 = 2.5� 10–1 N2/Hz
with corresponding values h=6� 10–4, 1.7� 10–3 and 2.5� 10–3. The broadening of the resonant
peaks is clearly observed. It is known that it is an essential property of spectrum shapes with large
non-linearity and low damping [10]. One can also observe the rising of a broad third peak.
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Furthermore, resonant peaks shift to lower frequencies, particularly the second and the third
ones. This can be explained by the more and more asymmetrical shape of the time trace of the
transmitted force induced by the flight response of the cylinder. Hence, as expected, loss of contact
non-linearity is stronger than the Hertzian contact one.

Fig. 6 displays the corresponding experimental normal force probability density functions. The
associated mean value, standard deviation and skewness values are given in Table 2. Probability
density functions are strongly asymmetrical and hardly deviate from a Gaussian process. This is
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confirmed by skewness values given in Table 2. Asymmetric behaviour corresponds to the
appearance of a peak at the zero transmitted normal force in the probability density functions
(N=�1). In particular, the longer flight time of the cylinder, the higher the peak is. Calculation of
the peak area allows estimation of the total loss of contact duration (this has been also estimated
by treating time histories with coherent results). Results are reported in Table 3. For the highest
input level, intermittent contact loss occurs during approximately 15% of the overall time.

Fig. 7 displays an example of the time history of the normal force for an input level such that
intermittent contact loss occurs. From time traces, the total number of contact losses during the
acquisition time (20 s) is measured. The mean period of the cylinder flight is also estimated. The
results are presented in Table 3. For the highest input level, this mean period is approximately
equal to 1.5 ms and the number of impacts becomes large (around 2200 during an observation
time of 20 s).

5. Theoretical results

5.1. The stationary Fokker–Planck equation

Assuming stationary Gaussian white-noise excitation, statistics of the stationary response can
be obtained using the Fokker–Planck equation [2,6,7,11]. To this end, consider the following
second order non-linear differential equation of motion, in the general form

.q þ 2z ’q þ GðqÞ ¼ f ðtÞ; ð16Þ

where f(t) is a zero mean stationary Gaussian white-noise excitation with intercorrelation function
Rff (t) = 2phd(t), i.e., a power spectral density Sff ð$Þ ¼ h:GðqÞ represents the non-linear restoring
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Table 2

Mean value E[N], standard deviation s and skewness g of the measured dimensionless transmitted force

h E[N] s g

6.0� 10–4 �2.1� 10–4 0.70 0.406

1.7� 10–3 �3.4� 10–4 0.78 0.464

2.5� 10–3 �2.4� 10–4 1.01 0.758

Table 3

Loss of contact duration

h Total loss of contact

duration (%)

Number of loss of contact

during 20 s

Mean period of

cylinder fly (ms)

6.0� 10–4 3 693 0.9

1.7� 10–3 6 1050 1.1

2.5� 10–3 15 2227 1.5
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force including the non-linearity related to contact loss. The forward Fokker–Planck equation
which governs the transitional probability density function pðq; ’q; t q0j ; ’q0Þ of system (16) is
obtained as follows:

@p

@t
þ ’q

@p

@q
¼

@

@ ’q
½2z ’qp þ GðqÞp� þ ph

@2p

@ ’q2
: ð17Þ

Considering the stationary case and after some rearrangements, the stationary joint probability
density function ps(q, ’q) satisfies

@

@ ’q
GðqÞps þ

ph

2z
@ps

@q

� �
þ 2z

@

@ ’q
�

@

@q

� �
’qps þ

ph

2z
@ps

@ ’q

� �
¼ 0: ð18Þ
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J. Perret-Liaudet, E. Rigaud / Journal of Sound and Vibration 265 (2003) 309–327318



Hence, a solution is achieved by requiring

GðqÞp þ
ph

2z
@p

@q

� �
¼ 0 ð19Þ

and

’qp þ
ph

2z
@p

@ ’q

� �
¼ 0: ð20Þ

From Eqs. (19) and (20), one easily obtains a solution for the stationary joint probability density
function ps (q, ’q) as

psðq; ’qÞ ¼ A exp
�2z
ph

’q2

2

� �
exp

�2z
ph

Z q

0

GðsÞ ds

� �
; ð21Þ

where A is a constant which normalizes the density function. From Eq. (21), marginal densities for
the displacement and the velocity appear statistically independent and a closed form for the
displacement probability density function pq(q) is easily achieved as follows:

pqðqÞ ¼ C exp
�2z
ph

Z q

0

GðsÞ ds

� �
ð22Þ

or from expression of G(q):

pqðqÞ ¼ Cexp �
�2z
ph

3

5
1 þ 2

3
q


 �5=2�q � 3
5

� �� �
if q > �3

2
;

pqðqÞ ¼ Cexp �
2z
ph

�q � 3
5

� � �
if qp� 3

2
;

8>>><
>>>:

ð23Þ

where C is a constant which normalizes the marginal density function.
As one can see in Eq. (21), marginal density function for the velocity is a Gaussian

process:

p ’qð ’qÞ ¼ B exp
�2z
ph

’q2

2

� �
; ð24Þ

where B is a constant which normalizes the marginal density function.
By using numerical integration methods, statistical moments of the displacement q(t) are

computed from the probability density function (23):

E½qnðtÞ� ¼
Z þN

�N

qnpqðqÞ dq: ð25Þ

Since the relation between the displacement q(t) and the elastic restoring force N(t) is known, the
probability density function of the elastic restoring force pN(N) is derived in a classical manner
[12].

Consider the relation N = G(q):

N ¼ 1 þ 2
3
q


 �3=2�1 if q > �3
2
;

N ¼ �1 if qp� 3
2
:

(
ð26Þ
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If qi, i=1,..., r, are all real roots of Eq. (26), one obtains the probability density function of the
elastic restoring force as

pNðNÞ ¼
Xr

i¼1

pqðqiÞ
N 0ðqiÞj j

; ð27Þ

where N0(q) is the derivative of N with respect to q.
Finally

pNðNÞ ¼ ð1 þ NÞ�1=3pq
3
2
ð1 þ NÞ2=3 � 3

2

� �
if N > �1;

pNð�1Þ ¼ dð�1Þ
R�3=2
N

pqðsÞ ds;

pNðNÞ ¼ 0 if No� 1;

8>><
>>: ð28Þ

where d is the Dirac delta function. Notice that pN is zero for N o –1, and contains an impulse at
N=–1 of area equal to the probability of loss of contact. Notice also that

Lim
N-�1
N>�1

pNðNÞ ¼ þN: ð29Þ

Statistical moments are given as follows:

E½NnðtÞ� ¼
Z þN

�N

NnpNðNÞ dN ð30Þ

from which mean value, standard deviation and skewness values can be derived.

5.2. Monte Carlo simulations

Monte Carlo simulations have been performed to estimate the response spectral densities of the
randomly excited system. For this end, an explicit numerical time integration scheme (central
difference method) has been used for solving the motion equation (9) and for achieving dynamic
time histories of the normal force. Spectra were obtained via a Fast Fourier Transform procedure
with number of samples equal to 2048. Average spectra were obtained with a number of spectrum
up to 400. To simulate the Gaussian white-noise external force, a sufficiently wide band limited
pseudo-random signal has been considered

wðtÞ ¼ WM

Xk¼M

k¼1

cosð$ktþ fkÞ ð31Þ

Frequencies $k are independent and uniformly distributed in ½0; $max� and WM is a coefficient
which takes into account the frequency resolution

WM ¼
ffiffiffiffiffiffiffiffiffiffi
Df :h

p
ð32Þ

Choosing phases

fk ¼ 2p
ffiffiffiffiffiffiffiffiffiffi
�2r1

p
cosð2pr2Þ; ð33Þ

where r1 and r2 are two random numbers uniformly distributed over [0,1], the signal is normally
distributed.
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Also, Monte Carlo simulations have been used to obtain statistics of the stationary responses
treating the theoretical time histories. Statistical moments have been estimated over 105 times the
period of the linearized system with up to 250 samples by period.

5.3. Theoretical results

5.3.1. Statistics of the stationary response

The probability densities of the elastic restoring force are shown in Fig. 8 (h = 3� 10–6, 8� 10–5,
5� 10–4) and Fig. 9 (h = 1.2� 10–3, 2� 10–3, 3.2� 10–3) for increasing input levels and for a
damping ratio equal to 0.5%. The two figures correspond, respectively, to input levels chosen in
such a way that no loss of contact occur. By comparing Fig. 8 with Fig. 3, both results derived
from the Fokker–Planck equation and the Monte Carlo simulations are in good agreement with
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experimental results. Small differences observed in Fig. 9 can result from numerical errors
associated to the estimation of the Dirac value at N=–1. Actually, the introduced input levels
leading to the same probability density function shapes are not exactly the same but appear to be
of the same order. Moreover, it should be stated that the pertinent variable is the ratio between
damping ratio and input level (see Eq. (21)). Further, the damping law as well as damping value
are not exactly known particularly when the amplitude response grows. So, in the authors’
opinion, adjusting damping ratio gives no more satisfaction than adjusting input level. However,
one can assume that the experimental damping ratio of 0.5% is overestimated. Actually, by taking
into account the average ratio between the two series of input levels, one can conclude that a
damping ratio equal to 0.3% is more convenient. By comparing Fig. 9 with Fig. 6, one can
conclude that a satisfactory agreement between experimental and numerical results also exists
when intermittent contact losses occur. Of course, the theoretical infinite value and Dirac function
at N=–1 cannot be observed in the experimental case. Further, ball motion between the two
planes associated to the second mode and clearly experimentally observed (see Fig. 7) is a source
of discrepancy between theoretical and experimental probability density functions. Numerical
statistics obtained from Eq. (25) are given in Table 4. Statistical results obtained from Monte
Carlo simulations are reported in Table 5. Concerning standard deviations, in accordance with the
preceding remarks, the authors have found that the satisfactory agreement between measured and
computed results (see Tables 1 and 2) becomes very good if the input level is scaled by the
damping ratio with a value equal to 0.3%. So, one can conclude that the numerical tools used in
this study are suitable for describing standard deviations, even if the probability density function
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Table 4

Mean value E[N], standard deviation s and skewness g of the computed dimensionless transmitted force by using the

Fokker–Planck equation

h E[N] s g p (qo –1.5) (%)

3� 10–6 �1.57� 10–3 0.03 �0.010 E 0

8� 10–5 �4.23� 10–3 0.16 �0.054 E 0

5� 10–4 �2.81� 10–2 0.40 �0.157 E 0

1.2� 10–3 �1.33� 10–3 0.60 0.502 2

2.0� 10–3 �1.66� 10–3 0.75 0.710 7

3.2� 10–3 �2.14� 10–3 0.91 0.951 15

Table 5

Mean value E[N], standard deviation s and skewness g of the computed dimensionless transmitted force by using

Monte Carlo simulations

h E[N] s g

3� 10–6 �3.0� 10–4 0.03 0.018

8� 10–5 �1.0� 10–3 0.15 0.097

5� 10–4 �2.0� 10–3 0.38 0.260

1.2� 10–3 �4.1� 10–3 0.57 0.490

2.0� 10–3 �4.2� 10–3 0.72 0.666

3.2� 10–3 �4.4� 10–3 0.88 0.917
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is not exactly the same when contact losses occur. Concerning mean values, discrepancy between
experimental results and numerical ones is found. However, it should be pointed out that the
numerical mean values remain very close to the static applied load which is coherent with
experimental data. Further, samplings of both experimental time traces and those obtained from
Monte Carlo simulations are perhaps not sufficient to ensure precise estimate of the mean value.
Concerning skewness values, good agreement between experimental and Monte Carlo simulations
results is obtained, but discrepancies appear with results obtained from the Fokker–Planck
equation. The authors do not have a precise explanation, but can assume that the sampling
procedure leads to numerical errors for estimating skewness values. Finally, probabilities of
contact loss given in Table 4 have been computed from Eq. (23). Again, very good agreement with
experimental results is observed (compare the total loss of contact duration given in Table 3).

5.3.2. Response spectra

Fig. 10 and 11 display the numerical average one-sided RMS magnitude spectra for increasing
input levels (h = 3� 10–6, 8� 10–5, 5� 10–4, 1.2� 10–3, 2� 10–3, 3.2� 10–3). Comparisons with
Fig. 2 and 5 reveal a very good agreement between experimental and numerical results when
intermittent contact losses do not occur. The agreement remains satisfactorily when contact losses
occur, even if experimental level of the second and third peaks are higher than those obtained
from numerical simulations.

Since the experimental test rig does not permit higher input levels, it can be interesting to know
the effect of increasing input level on the transmitted force response through numerical
simulations. Fig. 12 displays the average one-sided RMS magnitude spectra of the elastic restoring
force for input levels higher than the preceding ones. The result is a large broadening of the
spectral density response, in such a way that preceding peaks completely disappear.
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5.3.3. Effect of the Hertzian contact law on response spectra

Since a linear restoring force law is introduced in many modelling of practical systems, it is of
interest to compare results between models which include the Hertzian contact law and those
which do not. For this end, consider a simplified model for describing the elastic restoring force as
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Fig. 11. Numerical one-sided RMS spectra of the elastic restoring force for h E 1.2� 10–3, 2� 10–3 and 3.2� 10–3
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follows:

N ¼ ð1 þ qÞHð1 þ qÞ � 1: ð34Þ

Fig. 13 displays the numerical average one-sided RMS magnitude spectra for three input levels
(h = 8� 10–5, 2� 10–3, 1.4� 10–2) showing comparisons between results obtained from the two
models. Identical results are obtained around the primary peak. In contrast, the simplified model
is not suitable to describe the dynamic behaviour in the range of higher frequencies. Depending on
the objective, approximation (34) can be favourably introduced under the cover of saving of time
consumed.

6. Conclusions

An experimental test rig consisting of a dry double sphere–plane Hertzian contact is modelled
as a non-linear single-degree-of-freedom system. Non-linear normal force response of this
randomly excited system is analyzed through experimental and theoretical results.

For very low input force amplitude, almost linear behaviour is observed, and the experimental
linearized contact frequency is deduced with a very good agreement with the predicted one.
Equivalent viscous damping ratio is less than 0.5%. Increasing the input amplitude reveals the
second harmonic spectral peak. Probability density functions of the response show a little
deviation from a Gaussian process resulting from the Hertzian non-linearity as long as
intermittent contact loss is very occasional.

As the input level increases, the probability of intermittent loss of contact strongly increases.
The probability density functions of the response become largely asymmetrical. Furthermore,
the rising of the third harmonic spectral peak and the broadening of spectral peaks are
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observed. This last behaviour is known as an essential property of the power spectral
density of systems with large non-linearity and low damping. It is clearly verified in the
experimental results.

For all these behaviours, numerical and experimental results agree. It is concluded that the
associated theoretical model is sufficiently accurate, despite the fact that damping is modelled in a
very simple way. So, compared to vibrations under harmonic excitation, precise knowledge of the
damping law during vibroimpact response is less determining. Also, the stationary Fokker–Planck
equation and Monte Carlo simulations are suitable methods for describing the dynamic behaviour
of the impacting Hertzian contact under normal random excitation.

In future, further numerical and experimental works are planned to take into account the effect
of a lubricating film and the effect of sliding surfaces.
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Appendix A. Nomenclature

m rigid moving mass
c damping coefficient
k constant obtained from Hertzian theory
Fs static load
F(t) excitation normal force
W(t) Gaussian white-noise process
h parameter controlling input level
z(t) normal displacement
Zs static contact compression
O linearized natural circular frequency
f0 linearized natural frequency
z damping ratio
t dimensionless time
q(t) dimensionless normal displacement
f(t) dimensionless excitation normal force
w(t) dimensionless Gaussian white-noise process
o circular frequency
$ dimensionless circular frequency
N(t) Hertzian elastic restoring force
Sxx(o) power spectral density of x

Gxx(o) one-sided power spectral density of x
Rxx(t) intercorrelation function of x
px(x) probability density function of x
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E[x], %x mean value of x

s standard deviation
g skewness value
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